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Quantum parallelism can be implemented on a classical ensemble
of discrete level quantum systems. The nanosystems are not quite
identical, and the ensemble represents their individual variability.
An underlying Lie algebraic theory is developed using the closure
of the algebra to demonstrate the parallel information processing
at the level of the ensemble. The ensemble is addressed by a
sequence of laser pulses. In the Heisenberg picture of quantum
dynamics the coherence between the N levels of a given quantum
system can be handled as an observable. Thereby there are N2

logic variables per N level system. This is how massive parallelism
is achieved in that there are N2 potential outputs for a quantum
system of N levels. The use of an ensemble allows simultaneous
reading of such outputs. Due to size dispersion the expectation
values of the observables can differ somewhat from system to
system. We show that for a moderate variability of the systems
one can average the N2 expectation values over the ensemble
while retaining closure and parallelism. This allows directly prop-
agating in time the ensemble averaged values of the observables.
Results of simulations of electronic excitonic dynamics in an en-
semble of quantum dot (QD) dimers are presented. The QD size
and interdot distance in the dimer are used to parametrize the
Hamiltonian. The dimer N levels include local and charge transfer
excitons within each dimer. The well-studied physics of semicon-
ducting QDs suggests that the dimer coherences can be probed at
room temperature.

noise resilience | 2D electronic spectroscopy | information quantal
processing at room temperature | quantum dots | Lie algebra

Experimental quantum computing based on coupled two-level
systems (qubits) is making impressive progress (1, 2), and

equally important, algorithms that take advantage of the new
capabilities for linear algebra operations essential to machine
learning and artificial intelligence are being actively developed
(3–6). Such algorithms include principal component analysis,
which is used extensively to compact data. In chemical physics,
NMR spectroscopy has received particular attention, initially
driven by the analogy that a spin 1/2 nucleus is a two-level sys-
tem. This is aided by the exquisite control that is possible over
radio frequency pulses. Developments of algorithms for appli-
cations in the chemical sciences is also very active (7). Infor-
mation theoretic related techniques offered by chemical physics
include chemical kinetics and spectroscopy (8). Our work below
takes particular advantage of progress in two-dimensional elec-
tronic spectroscopy (2DES) (9–11). Certain aspects of how we
use the 2D coherence maps to perform logic have already been
reported (12–14). Another area of chemical physics and material
science that informs our work is the spectroscopy of semi-
conducting quantum dots (QDs) (15–24). Colloidal QDs have an
inevitable size dispersion (25, 26). This dispersion is a source of
noise in the coherence between states of QDs established by
optical addressing, when averaged over the array. It is interesting

to note that this noise turns out to be similar to the effects of
perturbations by the solvent in 2D spectroscopy (9–11, 27–34).
In this paper we discuss the information processing that can be

achieved using the quantum dynamics of an N-level system as
addressed by short laser pulses. The concrete realistic example is
an array of semiconducting QD dimers where each dimer has
N = 8 excited levels and even more when fine structure splittings
are included. Using an algebraic approach we argue that such a
device can perform a classical-like parallel logic on N2 real-
valued observables. The proposal is to address and read such
an array. The optical addressing and reading are necessarily an
average over many dimers. Because the array is a classical, in-
coherent, mixture of many quantum systems, the averages over
the array can be read reliably even for noncommuting observ-
ables. To validate the proposed scheme we need to demonstrate
why a single N-level system can perform parallel logic with an
input provided by one or more laser pulses and with optical
emission as the readout. The 2DES is the method that we
highlight to implement this scheme (24). The inevitable size
dispersion of semiconducting colloidal QDs means that the dot
sizes are not identical, and it is necessary to average the response
of the dots over the distribution of their size. We discuss two
aspects of this averaging. The first is can we read the output
reliably despite the size disorder. To answer this question we
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compute the quantum dynamical response of each dot and then
average the output over the size distribution. To generate a
stable average we need to include thousands or more of dots.
This gives rise to a practical question, can we perform the av-
eraging over the distribution of sizes before computing the dy-
namics? If so, we only need to compute the quantum dynamics
once. We show that as long as the size distribution does not
qualitatively alter the energy spectrum of the dots, the averaging
can be done first, resulting in an output that is approximate but
quite accurate. Whether we average first or do the dynamics first
and then average, the output shows dephasing in time of the
N(N − 1) coherences between the N energy levels. The extent of
dephasing depends on the breadth of size disorder, and we find
that at the current capabilities of about 5% variation in the dot
diameters, almost all N(N − 1) coherences are readable.
When we sample over enough dots the distribution of energy

levels of dots of different size stabilizes, and as is to be expected
from the general theory (35, 36), the distribution is well de-
scribed by a Gaussian for widths of size distribution smaller than
or equal to 5%. This enables us to compute the dephasing time
scale analytically. One can expect on physical grounds that the
coherence that is dephasing faster is between the higher elec-
tronically excited states of the dimers as these have the widest
size-induced fluctuations in their energies. This, however, needs
to be qualified because the oscillation period of the coherences is
determined by the energy differences of the two levels. The
energies of different levels can be correlated which will also af-
fect the distribution of their difference.
Our model system is an ensemble of small (2 to 4 nm diam-

eter) heterodimers of CdSe QDs as studied experimentally in ref.
37. The sizes of the two QDs in the dimer are selected so as to
bring excitons into resonance, leading to efficient interdot cou-
pling within the dimer. Individual CdSe QDs have received
considerable theoretical attention (25, 38–44). Here we focus on
dimers which exhibit a richer level structure, and we compute the
dynamics for a very large number of dimers with slightly different
dot sizes. We chose to use a model Hamiltonian based on the
effective mass model with the k.p method (38, 40, 41, 45, 46) to
describe an individual dot and describe the coupling with an
excitonic Hamiltonian including both local and charge transfer
(CT) excitons. As discussed before (47), this enables us to real-
istically model the effect of size variation of the individual dots
and also account for variations in the interdot distance. We re-
port first on the model electronic structure of the dimers in the
ensemble with special reference to the distribution of energy
levels and of the spacings between them. SI Appendix, section S1,
provides more details. We induce transitions by a fast (and
therefore broad in frequency) laser pulse. After this optical
addressing is over, the coherences between two levels oscillate
with the frequency that equals the spacing between the energies
of these two levels. The size-induced dispersion in these spacings
is what determines the dephasing time. SI Appendix, section S2,
provides additional details about these distributions. Next we
provide a brief outline of the dynamics of a single dimer under a
laser addressing and of the kind of information processing that
can be achieved when the dots are uniform in size. Using the
results for computing the dynamics in the ensemble of dots of
varying size, we discuss next that even in the case of small but
realistic size dispersion one can still perform information pro-
cessing. We outline how to first average over the size distribution
and only then perform the dynamics, with more details given in
SI Appendix, section S3. Last, we present our results (see also SI
Appendix, section S4) and conclusions with the take-home mes-
sage that information processing based on both the population of
levels and their coherences is possible for a narrow but realisti-
cally finite size dispersion. This is because the output is optical
and so can be read in a time shorter compared to the dephasing.

It remains the case that any reduction in size dispersion will be
very beneficial in considerably increasing the dephasing time.
The conclusion that size dispersion is tolerable but the lower

the better raises the question of why not to use molecules (or, for
that matter, stoichiometric dots). Such systems have no inherent
fluctuations but are more susceptible to perturbations by the
environment. The formalism for first averaging over the size
distribution (see also SI Appendix, section S3) is also useful for
such perturbations. The real issue is practical. We need logic
units with a dense set of excited electronic states in the visible
range of the spectrum where short femtosecond laser pulses are
available so that many states of each unit are within the coherent
bandwidth of the laser.

The Electronic States of the Dots and of the Dimer
Our purpose is to model the level structure of the individual
dimers as a function of the size of the two monomeric QDs and
of the QD separation. The energy resolution accuracy needs to
be sufficient for the very fast dynamics, say below 250 fs, induced
by a sequence of femtosecond laser pulses that is of interest in
the 2D electronic spectroscopy that we use to address and read
the ensemble (24). We model the isolated small CdSe QDs with
radius smaller than the bulk Bohr radius of the excitons. The
states are lowest eigenstates of a confining spherical well of finite
depth. Solving the radial Schrödinger equation gives the hole
and electron energies and wave functions as a function of the
QD size.
Colloidal semiconducting QDs are synthesized with a finite

size dispersion at best 5% in diameter (Fig. 1A). The energies of
the hole and electron states depend on the dot size, and the
dispersion in their energies with size gives rise to a dispersion in
the spectral response. From these single-particle states, analo-
gous to molecular orbitals, one forms all possible many-electron
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Fig. 1. Building the electronic states of the ensemble. (A) The Gaussian size
distribution of the two dots, QDA and QDB, that make a dimer. Each dis-
tribution is characterized by a mean value of the diameter,DA and DB, and an
SD σA and σB, respectively. (B) Excitations leading to the zero-order exciton
states built upon two hole states (h1 and h2; blue bars) and one electron (e;
red bars) state per dot. Eight exciton states can be constructed, four local
excitons, i.e., h1eA (Top), where the hole–electron pair is localized on the
same dot (excitation represented by a straight line), and four CT, i.e., h1A-eB
(CT states; Bottom), where the hole and the electron are localized on dif-
ferent dots (excitation represented by a curved line). (C) Eigenexciton states
of a heterodimer QDA–QDB with DA = 2.4  nm and DB = 3.6  nm and a dot
separation (surface to surface distance) L = 0.55 nm. The eigenexcitons can
be designated by their zero-order label because the intradot and interdot
Coulomb interactions are weak. In an ensemble of size-dispersed dimers,
each level in C is the mean value of an energy distribution that for moderate
size dispersion (up to 5% in diameter) remains Gaussian; see SI Appendix,
sections S1 and S2, and ref. 47 for additional details, validation of the energy
levels model, and figures.

Gattuso et al. PNAS | September 1, 2020 | vol. 117 | no. 35 | 21023

A
PP

LI
ED

PH
YS

IC
A
L

SC
IE
N
CE

S

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
1,

 2
02

1 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008170117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008170117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008170117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008170117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008170117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008170117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008170117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008170117/-/DCSupplemental


www.manaraa.com

determinants that allow for a single excitation. These are the
zeroth-order exciton states. We start with a single electron de-
scription for three one-particle states of each dot. As shown in
Fig. 1B, in the dimer the excitation can either be localized on the
same dot, either dot A (h1eA and h2eA) or dot B (h1eB and
h2eB), leading to four local (Frenkel) excitons, two on each dot,
or involve the two dots, leading to four CT states (h1AeB,
h2AeB, h1BeA, and h2BeA).
To go beyond an independent particle model we add cou-

lombic and exchange coupling within (intradot) and between the
dots (interdot). The interdot Coulomb coupling magnitude de-
pends also on the distance between the dots. Both types of
Coulomb coupling are typically weak: the intradot Coulomb
coupling because of the rather large energy differences between
the excitons of the isolated dots (SI Appendix, Fig. S1) and the
interdot ones because of the surface to surface distance. Diag-
onalization of the two-particle Hamiltonian results in the eight
eigenstates of the dimer shown in Fig. 1C. See SI Appendix,
section S1, model excitonic Hamiltonian, and ref. 47 for addi-
tional details. The level structure of the eigenstates shown in
Fig. 1C is computed for a dot separation of 0.55 nm and dot
diameters DA = 2.4  nm and DB = 3.6  nm.
To label the eigenstates of dimers of different size we use the

index α. It is a two-digit index because it specifies the size of each
one of the two dots in the dimer. Note that also in a nominally
homodimer for which the two dots have the same mean size, the
two dots need not be exactly of the same size because of the size
dispersion. In a heterodimer as shown in Fig. 1 the two dots are
of different mean size. The label α suffices also after including
the coupling of two monomers because we take it that the dif-
ferent dimers are sufficiently far apart to be weakly interacting.
By sampling independently 4,000 dots with a Gaussian size

distribution of 5% in diameter we get the dispersion in energies
in an ensemble of single dots as shown in SI Appendix, Fig. S1.
Shown in SI Appendix, Fig. S2, is the generated distribution of
eigenenergies in an ensemble of 4,000 dimers. Shown also is a fit
for the energies of each state to a Gaussian distribution; see SI
Appendix, Tables S1 and S2, for values of the parameters. It
follows from the results shown in SI Appendix, Fig. S2, and our
other simulations that the higher excited states often have a
wider width in their energy spacings to other states. The distri-
bution of size-dependent properties that is of direct relevance to
our computation is that of differences between eigenstate ener-
gies. Taking the energies to be Gaussian distributed allows an
analytical computation of the distribution of their difference that
will also be Gaussian, with a width that depends on the extent of
correlation between the two levels (SI Appendix, Figs. S3 and S4
and Tables S3 and S4). When higher excited states are involved,
the Gaussian distribution of the energy differences can be dis-
torted, and higher moments may be needed to characterize the
distribution of the energy spacings as discussed in SI Appendix,
section S2.

The Dynamics of Observables
The dimers in the array are sufficiently far apart so that they are
effectively not interacting. Thereby the array is an ensemble of
independent dimers. The group structure underlying the dy-
namics of an isolated dimer is discussed in this section. It is this
structure that enables the parallelism in the information pro-
cessing. Each dimer has a ground state (GS) and a set of eight
orthonormal quantum excitonic states listed in Fig. 1B and
shown explicitly in Fig. 1C. This means that all quantum me-
chanical operators for the model can be represented as 9 × 9
Hermitian matrices. We label the basis states of the matrices
|n〉,   n = 0,1,2, ..,N. n = 8 in the example we use, and n = 0 is to
the GS. A dimer is indexed by its size parameters α, and later we
will average over the distribution of α. In this section we focus on

a single dimer, and α has a constant given value. For any value of
α the Hamiltonian is a 9 × 9 matrix where the entries are func-
tions of the size index. The elements of the density matrix of a
dimer will also depend on the size.
The Hamiltonian Hα of dimer of size α consists of three kinds

of terms. Diagonal terms are the energies of the zeroth-order
excitonic states. Off-diagonal terms mix the states by two quite
different mechanisms. One kind is due to the hole electron
Coulombic and exchange interactions, and the other kind is the
dipole coupling of states induced by the pumping lasers. We do
not assume that the coupling by the lasers is weak so that mul-
tiphoton transitions are possible, but we do assume that the la-
sers are not intense enough to access higher excited states of the
dots that are not in our basis. It is useful to diagonalize the
Coulombic and exchange interactions. This will be referred to as
the eigenstates basis. In this basis the Hamiltonian is diagonal
when the laser is off.
We write the Hamiltonian of a dimer of size α as a 9 × 9 matrix

in the space of the accessible states

Hα = ∑
n,m

hnmα |n〉〈m|
= ∑

n,m
hnmα Enm.

[1]

It is convenient already here to introduce the notation
Enm ≡ |n〉〈m|. The coherences Enm have a very useful represen-
tation as an N × N matrix where all of the elements are zero
except for the number 1 in the position n, m. It is appropriate to
refer to these as Gelfand matrices (48, 49).
In the eigenstate basis and when the laser is not strong, the

diagonal matrix elements are the eigenenergies. The off-diagonal
matrix elements are the dipole transitions induced by the laser.
These elements are time dependent. After the laser pulses are
over, the Hamiltonian is diagonal, and only the phase of the
eigenstates changes in time.
Each dimer is coherently pumped, and so, starting from the

GS, each dimer can be described by a wave function. The wave
function for dimer α at the time t is of the form⃒⃒
ψα(t)〉 = ∑mCαm(t)|m〉, where the coefficients Cαm(t) are
arranged as a column vector. When initially (time = 0) the di-
mers are in their GS, all of the Cαm(t = 0) coefficients are zero
except for Cα0. Otherwise the coefficients vary with time due to
the laser pulses. The density matrix of a dimer of size α is⃒⃒
ψα(t)〉〈ψα(t)

⃒⃒
= ∑mnCαm(t)Cp

αn(t)|m〉〈n|. Using the notation
Emn ≡ |m〉〈n| for the coherences (or the populations for m = n),
the density matrix for any given dimer can be written as

ρα(t) = ∑
mn
ρmn
α (t)Emn, [2]

where the coherence for a given size α is

ρmn
α (t) = Cαm(t)Cp

αn(t) = Tr(ραEnm) ≡ 〈Enm〉. [3]

The Gelfand matrices satisfy the commutation relation

[Enm,Ekl] = δm,kEnl − δl,nEkm [4]

of the Lie algebraic Unitary group (49) U(N).
The Hamiltonian (Eq. 1) and the density matrix (Eq. 2) are

linear sums of the Gelfand matrices. Moreover, the commutator
of two such matrices (Eq. 4) is also linear in the matrices. Any
observable of the system of N levels and, in particular, the
density matrix and its time evolution can be fully specified as a
linear combination of the Gelfand matrices with time-dependent
coefficients. It can also be proven for other algebras (50) by using
the Liouville equation of motion for the density matrix. The
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closure property (Eq. 4) and when the Hamiltonian is linear in
the coherences (Eq. 1) imply that the values of the coefficients
Cαm(t) as a function of time satisfy a first-order in time linear
differential equation. The Heisenberg equation of motion for the
mn matrix Enm is

iZ
∂
∂t
Enm = [Enm,Hα] = ∑

kl
hklα [Enm,Ekl]

= ∑
kl
hklα (δm,kEnl − δl,nEkm)

= ∑
l
hml
α Enl −∑

k
hknα Ekm.

[5]

In terms of the elements of the density matrix, ρmn
α (t) = 〈Enm(α)〉,

this closure reads

iZ
∂
∂t

ρmn
α = ∑

l
hml
α ρlnα −∑

k
hknα ρmk

α . [6]

For computational purposes it is convenient to arrange the
density matrix elements as a vector of length N2 by listing its
indices in a lexicographical order. Then the equation of motion
of the N2 observables is a Liouvillian matrix acting on a vector

iZ
∂
∂t

ρmn
α = ∑

kl
Lmn,klρ

kl
α . [7]

Eqs. 6 and 7 describe the time evolution of the elements of a
density matrix of a dimer of size. The equations determine the
value of N2 variables [N populations (that sum up to unity) and
N(N − 1) coherences]. The role of the device is to produce the
values of the N2 variables after the laser pulse is over, and the
equations of motion 6 and 7 can be solved to provide these
values for a dot of a particular size. The point we ask to make
here is that the solution of the equations of motion exhibits
parallelism. To show this we note that the N2 by N2 Liouvillian
matrix can be diagonalized. Each eigenvector is an independent
mode of motion. There will be N2 eigenvalues, at least one of
which will be zero (= the conservation of probability) at the
level of a dimer of a given size. By writing each element of the
density matrix as a sum over eigenvectors of the Liouvillian
matrix it follows that each such value can be reached by up to
N2 − 1 distinct pathways, which is the maximal number of non-
zero eigenvalues of the Liouvillian matrix (see, for example,
refs. 51 and 52). This parallelism is a direct outcome of the
linearity of quantum dynamics as expressed in Eq. 5. The par-
allelism is an essential ingredient in our approach, and one key
purpose of this paper is to show that the parallelism is main-
tained also when we need to average over a distribution of sizes
of the dots, provided that distribution is not too broad (in a
sense to be defined).
Eqs. 6 and 7 exhibit parallelism at the level of a dimer of a

given size. The role of the device is to produce the values of the
N2 − 1 variables [N − 1 populations (that sum up to unity) and
N(N − 1) coherences] after the laser pulse is over. By diago-
nalizing Eq. 7 it is shown that each such value can be reached by
up to N2 − 1 distinct pathways which is the maximal number of
nonzero eigenvalues of the Liouvillian matrix. See, for example
refs. 51 and 52. Each pathway is an eigenvector of the Liouvillian
matrix. This parallelism is a direct outcome of the linearity of
quantum dynamics as expressed in Eq. 5.
The Liouvillian matrix, made up by the elements of the

Hamiltonian, is relatively sparse. The off-diagonal elements of
the Hamiltonian are time dependent because of the laser pulses
connecting different states of the dimer. After the pulses are
over, the Hamiltonian is purely diagonal, and the equations of
motion have the far simpler form

iZ
∂
∂t

ρmn
α (t) ̅̅̅̅̅̅̅̅→after  the  addressing(hmm

α − hnnα )ρmn
α (t), [8]

meaning that after the pulses the coherences oscillate with
frequencies given by the transition frequencies of the two
corresponding states.

The Dynamics of the Ensemble
Next we need to perform an average over an ensemble (= mix-
ture) of noninteracting dimers that differ somewhat in their size.
The straightforward way of doing so is to solve the equation of
motion for every dimer of size α and at any time t of interest to
perform an averaging of the coherences ρmn

α (t) over the size
distribution

ρnm(t) = ∑
α
pαρnmα (t). [9]

Here pα is the probability of a dimer of size α in the mixture. The
density matrix of the mixture, ρ = ∑α|α〉pαρα〈α|, is also diagonal
in the size index where we take dimers of different size to be
distinct, 〈α’|α〉 = δα’α. To identify the Hamiltonian H that acts to
propagate in time the density matrix of the ensemble we impose
that each dimer evolves independently of the others,

i
d
dt
ρ = ∑

α
|α〉pαi ddtρα〈α| = ∑

α
|α〉pα[Hα, ρα]〈α|. [10]

It follows that for dimers that are not interacting, the Hamilto-
nian H that is the generator of the motion of the mixture is
diagonal in the index α:

H = ∑
α
|α〉Hα〈α|

= ∑
α
|α〉∑

nm
hnmα Enm(α)〈α|

Hα = ∑
nm
hnmα Enm(α).

[11]

The Hamiltonian H generates the coherent motion of the aver-
aged coherences. Note that after the pulse the averaged Hamil-
tonian H is diagonal because the Hamiltonian of each dimer
is diagonal.
There is, however, a key difference brought about by the need

to average. The equations of motion (Eq. 6) for the coherence of
a particular dimer are closed. However, the equations of motion
for the coherence averaged over the dimers are not closed:

i
∂ρnm

∂t
= ∑

α
pα(i ∂∂tρnmα ) = ∑

α
pα∑kl

hklα (δnkρlmα − δlmρ
nk
α )

= ∑
α
pα∑l

hnlα (ρlmα ) −∑
α
pα∑k

hkmα (ρnkα ).
[12]

The problem arises because the averaging over the different sizes
and the time propagation do not commute, technically because
the Hamiltonian of the dimer depends on the size. The coher-
ences of different dimers will therefore oscillate with different
frequencies. In an N-level system, there are N2 observables, so to
converge the average of each requires computing a large number
of samples meaning that sampling over the size distribution is a
reliable but a rather tedious route.
Computing the proper ensemble average requires very many

repetitions of solving N coupled first-order in time differential
equations. Our aim below is to numerically simplify this task. It is
important to note that this exact result maintains the parallelism as
discussed for a single dimer following Eq. 7. That the parallelism is
maintained is to be expected because we are averaging over inde-
pendent dimers. What we seek to do next is to avoid the need to
average over many independent repetitions of the dynamics.
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A quantum mechanical ensemble will evolve coherently if it
evolves under a given Hamiltonian. With foresight we adopt the
averaged Hamiltonian H as given in Eq. 11. This is because, as
we discuss below, the frequency of the coherence when averaged
over the dots, ρnm(t) of Eq. 12, is the same as the frequency of the
coherence computed for a coherent evolution generated by the
averaged Hamiltonian. We shall also show computational ex-
amples for this analytical result.
We denoted by ρc the density matrix for the same set of states

as in the ensembleρc(t) = ∑ijρ
ij
c(t)Eij. This density is defined such

that it is propagated in time quantum mechanically under the
averaged Hamiltonian H = ∑klHklEkl (Eq. 11). Since both ρc and
H are linear combination of operators that are in the algebra, it
means that the equations of motion for the coherences, ρmn

c , are
closed.

i
∂ρnmc
∂t

= (∑
k
Hkmρ

nk
c −∑

l
Hnlρ

ml
c ). [13]

The closure property of the algebra (Eq. 4) leads immediately to
this result.
It follows that we can solve the equations of motion for the

coherences, and we chose initial conditions such that ρc and the
density matrix of the averaged ensemble (Eq. 12) coincide at the
initial time.
To generate a fully coherent time evolution, one can average

first over the size dispersion and only then generate the motion.
This is a tremendous savings in computational effort. It is
therefore of much practical interest to achieve the same com-
paction for the motion of the coherence in the real ensemble
which is a mixture.
After the pulse the Hamiltonian is diagonal, and the coher-

ences of ρc evolve periodically:

i
∂ρnmc
∂t

= (Hmm −Hnn)ρnmc . [14]

We define a time T such that the effective excitation by the pulse
is over. We find that taking T to be a time just past the maximum
of the envelope of the field works best. For any time t later
than T,

ρmn
α (t) = exp( − i(hmm

α − hnnα )(t − T))ρmn
α (T). [15]

Performing an averaging of the coherences over the size distri-
bution leads to

ρnm(t) = ∑
α
pαρnmα (t)

= ∑
α
pαexp(− i(hmm

α − hnnα )(t − T))ρnmα (T). [16]

Here enters our approximation. For the time T of the pulse we
will approximate ρmn(T) by ρnmc . Numerically, it is a close approx-
imation, and we shall show that it is valid as long as the dephas-
ing during the pulse is negligible, which requires that the time T
is short compared to the shortest dephasing time, which we cal-
culate below. Then

ρnm(T) = ∑
α
pαρnmα (T) ≃ ρnmc (T)

ρnm(t) = ∑
α
pαexp( − i(hmm

α − hnnα )(t − T))ρnmα (T)
= {∑

α
pαexp( − i(hmm

α − hnnα )(t − T))}ρnmc (T).
[17]

The averaging is analytically approximated using a cumulant
expansion over a random variable X (53, 54),

ln〈exp(itX)〉 = μit − (σ2
2
)t2 − i

κ3
3!
t3 + κ4

4!
t4 + ... [18]

Here μ and σ2 are the variance, and κ3 and κ4 are the third
and fourth cumulants of X (SI Appendix, section S3). To leading
order,

ρnm(t)  ≃ {∑
α
pαexp( − i(hmm

α − hnnα )(t − T))}ρnmc (T)
≈ exp( − iϖmn(t − T))exp( − (σ2

mn/2)(t − T)2)ρnmc (T).
[19]

Here ϖmn is the mean frequency of the nm coherence

ϖmn = ∑
α
pα(hmm

α − hnnα ), [20]

and it has the same value as the frequency of the coherence ρmn
c (t)

generated by the averaged Hamiltonian. σ2mn is the variance

σ2
mn = ∑

α
pα(hmm

α − hnnα )2 −ϖ2
mn. [21]

As long as (σmnT=
̅̅̅
2

√ )2 < 1, there is not much dephasing during
the pulse, and Eq. 19 can be a good approximation. It further
follows that as long as (σmnT=

̅̅̅
2

√ )2 < 1 is valid, the approxima-
tion is not going to be very sensitive to the precise value of T.
The cumulant expansion (Eq. 18) contains higher terms beyond

the second. These are the third and beyond cumulants of the
distribution of the frequencies of a coherence where the distri-
bution is due to the size dispersion which means that the eige-
nenergies hmm

α   and  hnnα depend on the size α. The computational
results are that most of the distributions of energy differences are
close to Gaussian (SI Appendix, Figs. S1– S4 and sections S2 and
S3). For a Gaussian distribution, all of the cumulants beyond the
second vanish. This implies that for the distribution of energy
differences the cumulants beyond the second are essentially neg-
ligible. The third cumulant is a measure of the skewness of the
distribution, and it is seen by inspection that the actual distribution
is typically symmetric about its mean. The fourth cumulant is a
measure called “excess” or “kurtosis.” It shows how much the tails
of the distribution are deviant from that of a Gaussian. So also for
the fourth cumulant the tight fit to a Gaussian distribution shows
that for most of the energy difference distributions, the first two
cumulants suffice. In the numerical examples discussed below, the
distribution of the frequencies of some coherences that involve
pairs of eigenstates that go through an avoided crossing as a
function of the sizes of the two dots that constitute the dimer (SI
Appendix, Figs. S5 and S7) cannot be fitted by a Gaussian distri-
bution. This is expected from the general theory because the index
α that designates the pair of dot sizes is no longer a good label; for
further details, see SI Appendix, section S2.
The result of Eq. 19 is based on propagating with an averaged

Hamiltonian and then superposing dephasing. Equivalently, one
can introduce an averaged Liouvillian in which the dephasing
can be built in directly in the Liouvillian. This is discussed ex-
plicitly in SI Appendix, section S4.

Results
We compare the dynamics of the coherences in a dimer com-
puted by performing explicitly the ensemble average of the dy-
namics of Nd = 4,000 dimers as given by the first two lines of Eq.
12 that we call in this section ρnmav (t),

i
∂ρnmav (t)

∂t
= (1=Nd)∑α

[∑N
l=0

hnlα (t)ρlmα (t) −∑N
k=0

hkmα (t)ρnkα (t)], [22]

with the approximate dynamics computed using Eq. 19 where we
include the first three cumulants,
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ρnmens(t) = exp( − iϖmn(t − T) − i
κ3
6
(t − T)3)exp

( − σ2mn
(t − T)2

2
)ρnmc (T),

[23]

where ρnmc (t) is propagated with the average Hamiltonian, H,
using Eq. 14. ϖmn and σ2mn are the average frequency and vari-
ance over the ensemble given by Eqs. 20 and 21, respectively, and
κ3 is the third cumulant (53) (SI Appendix, section S4). We do not
include the fourth cumulant because it cannot be fully accurately
computed due to the limitation of a finite sampling. We show
that the agreement between the two dynamics is excellent to
good, depending on how close the distribution of coherence fre-
quencies is to a Gaussian distribution. As can be seen from Figs.
2 and 3 below, only slow beating coherences with more distorted
frequency distribution are somewhat less well described by the
ensemble propagation. This very good agreement shows that the
algebraic approach to the dynamics of the ensemble discussed in
SI Appendix, section 4, and the working expression given by Eq.
23 capture the essence of the role of size disorder in arrays of
QD dimers. The algebraic structure is preserved at the level of
the disordered ensemble. This allows processing information in
parallel by addressing and reading the N2 coherences of a clas-
sical ensemble of dimers with realistic size dispersion. The
dephasing times computed for 5% size dispersion are of the or-
der of 20 to 30 fs or less for coherences involving the GS and up
to 100 fs for coherences between excited states, which makes
our conclusion also valid for room temperature experiments

where 1/kT = 26 fs. When a tighter size dispersion will be exper-
imentally achievable, this conclusion will be even stronger.
To illustrate this conclusion, we consider ensembles of two

types of dimers, the heterodimer whose level structure is shown
in Fig. 1C (DA = 2.4  nm and DB = 3.6  nm) and a quasi-
homodimer with DA = 3.4  nm and DB = 2.4  nm whose level
structure is shown in SI Appendix, Fig. S7 and section S2. For
both ensembles, the size dispersion is Gaussian with a realistic
variance of 5% in diameter (half width at half maximum = 5.8%)
as shown in Fig. 1A for the heterodimer ensemble.
The ensembles of dimers are excited by a short few-cycle vis-

ible (Vis) fs pulse. The oscillations of the electric field of the
pulse are confined in a Gaussian envelope whose duration
(σnm = 1.41  fs, full width at half maximum [FWHM] = 3.32 fs,
FWHM in energy of 1.1 eV) is shorter than most of the
dephasing times, σnm (Eq. 21), of the distributions of the fre-
quencies of the coherences. The carrier frequency of the pulse is
tuned to be resonant with the bright excitonic bands:
ω = 2.50  eV for the heterodimer ensemble and ω = 2.56  eV for
the ensemble of quasi-homodimers. For both pulses, the field
strength is 0.0002 a.u. which corresponds to a peak intensity of
1.4 109 W/cm2, and the maximum of the pulse envelope occurs at
24.1 fs.
In the case of the heterodimer ensemble, the pulse accesses

essentially the two bands of local exciton eigenstates resonant
with the pulse, h2eB and h1eA, which are slightly mixed and
overlapping (SI Appendix, Fig. S2). The population of the h2eB
band (mean energy of 2.52 eV) which is the brightest is 4.5%,

Fig. 2. Comparison of the coherence dynamics computed by a single integration of ρnmens(t) (Eq. 23; golden lines with circles) and ρnmav (t) (Eq. 22) by averaging
the individual time evolution of the 4,000 heterodimers (DA = 2.4  nm, DB = 3.6  nm, 5% dispersion in diameter) of the ensemble. The dynamics of coherences from
the GS to the local excitons h1eB, h2eB and h1eA is shown in panels A, B, and D, respectively. The dynamics of coherences between excitons (h1eB-h2eB, h1eB-h1eA
and h2eB-h1eA) is shown in panels D, E, and F. The first three cumulants are included in Eq. 23. The values of all of the cumulants of the frequency distributions of the
six coherences are reported in SI Appendix, Table S5, up to fourth order, and the frequency distributions are shown in SI Appendix, Figs. S2 and S3 and section S2.

Gattuso et al. PNAS | September 1, 2020 | vol. 117 | no. 35 | 21027

A
PP

LI
ED

PH
YS

IC
A
L

SC
IE
N
CE

S

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
1,

 2
02

1 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008170117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008170117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008170117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008170117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008170117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008170117/-/DCSupplemental


www.manaraa.com

and there is 2.35% population in the slightly higher in energy
h1eA band, centered at 2.62 eV. The excitonic band h1eB which
lies on the low side of the laser bandwidth (at 2.24 eV) has a
population of 4.29%. CT excitonic bands have very low oscilla-
tors, and their populations are lower than 10−2%. The pop-
ulation in the higher local excitonic band h2eA is lower than
0.1%. We show in Fig. 2 A–C the comparison of the dynamics of
the three fast beating (periods of the order of 1.5 fs) and fast
dephasing (dephasing times σnm of the order of 25 to 30 fs; SI
Appendix, Table S1) GS-h1eB, GS-h2eB, and GS-h1eA elec-
tronic coherences, computed as an ensemble average (Eq. 22)
and using the approximation of ρens given in Eq. 22. The
agreement is excellent, and the results of both dynamics are al-
most indistinguishable. Fig. 2 D–F shows the time evolution of
coherences between excited states: h1eB–h2eB intradot elec-
tronic coherence (Fig. 2D) and two interdot electronic coher-
ences, h1eB–h1eBA and h2eB–h1eA (Fig. 2 D and E). The
periods of the h1eB–h2eB and h1eB–h1eA coherences are more
than one order of magnitude slower than the fast beating ones of
Fig. 2 A–C. Their dephasing times are comparable or longer
depending on the correlation between the pair of energy level
distributions involved; see SI Appendix, section S2, for a discus-
sion and for the values of the dephasing times. For these two
coherences, the agreement between the two approaches is also
very good, and they exhibit enough oscillations within their
dephasing envelope to be measurable by 2D electronic spec-
troscopy. However, the interdot coherence h2eB–h1eA (Fig. 2F)

dephases too quickly to be experimentally observed and is
equally not useful for logic processing. As discussed above and in
SI Appendix, section S2, this coherence involves a pair of
eigenstates that go through an avoided crossing as a function of
the sizes of the two dots that constitute the dimers (SI Appendix,
Fig. S5). In that case, one does not expect theρens approach to be
valid, and the distribution of the energy differences between
these two eigenstates is not Gaussian (SI Appendix, Fig. S3). This
coherence exhibits a complex behavior with several periods and
dephasing times. The dephasing rate could be corrected by
adding higher cumulants in Eq. 23. However, their values are not
stable for the 4,000-dimer ensemble considered here.
We next turn to the case of the ensemble of quasi-

homodimers, for which there is an almost complete overlap of
the zero-order exciton bands, leading to eigenexcitons delo-
calized over the two dots. A representative scheme of the level
structure of a single dimer is shown in SI Appendix, Fig. S6.
Within a single quasi-homodimer, the coupling between two
quasi-degenerate zero-order excitons leads to a lower and to a
higher eigenstate delocalized over the two dots, roughly sepa-
rated in energy by twice the coupling strength. The interdot
Coulomb coupling is the strongest between local excitons. It is
much weaker between CT states. Since there are two local ex-
citons per dot, we get four mixed eigenstates made of local ex-
citons and four mixed CT states. The four eigenstates made by
the coupling of local excitons carry essentially all of the oscillator
strength. We label them low exciton h1eA–h1eB, high exciton

Fig. 3. Comparison of the coherence dynamics computed by a single integration of ρnmens(t) (Eq. 23; golden lines with circles) and ρnmav (t) (Eq. 22) by averaging
the individual time evolution of the 4,000 quasi-homodimers (DA = 3.4  nm, DB = 3.6  nm, 5% dispersion in diameter) of the ensemble. The dynamics of co-
herences from the GS to selected excitons is shown in panels A, B, and D. The dynamics of coherences between selected pairs of excitons is shown in panels D,
E, and F. The first three cumulants are included in Eq. 23. The values of all of the cumulants of the frequency distributions of the six coherences are reported in
SI Appendix, Table S7, and the frequency distributions are shown in SI Appendix, Figs. S2 and S3.
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h1eA–h1eB, low exciton h2eA–h2eB, and high exciton h2eA–

h2eB (SI Appendix, Fig. S6). At the level of the ensemble, we get
eigenexciton bands of mixed nature, delocalized over the two
dots. Among them, the pulse accesses the lowest three local
bands: low exciton h1eA–h1eB, high exciton h1eA–h1eB, and
low exciton h2eA–h2eB. In the case of the homodimer ensemble,
all of the coherences have an interdot character.
We show the six coherences resulting from the population of

these three eigenexciton bands by the pulse in Fig. 3. As in the
case of the ensemble of heterodimers, the dynamics of GS–
exciton coherences (Fig. 3 A–C) and of the rather fast beating
coherences between excited states shown in Fig. 3 E and F are
very well captured by the propagation of the ρens(t) density matrix
(Eq. 23). The very slow beating coherence between low/high
exciton h1eA–h1eB (Fig. 3D) is less well captured. The reason is
the same as for the coherence shown in Fig. 2F in the case of the
ensemble of heterodimers. This pair of dimer states goes through
an avoided crossing as a function of the sizes of the two dots of
the dimer (SI Appendix, Fig. S7), and one does not expect the ρens
approach to be valid. This quickly dephasing coherence will,
however, be difficult to observe experimentally because of its low
intensity and of the few oscillations of different periods that
occur before its complete dephasing. As was the case for the slow
beating coherence of the heterodimer (Fig. 2D), such coherences
cannot be used to encode and process information in a logic
scheme. Because of their slower beating periods and multi-
dephasing times, they are also more likely to interact with pho-
nons and be subject to environmental perturbations.
We show in SI Appendix, Figs. S8 and S9 and section S4, the

dynamics of the same coherences as in Figs. 2 and 3 but com-
puted for a narrower 3% size dispersion. The dephasing rates are
2 to 3 times slower than for 5% size dispersion ensembles, and
the fits to Gaussian distributions are tighter (SI Appendix, Figs.
S2 and S4 and Tables S2, S4, S6 and S8). As expected, narrower
size dispersions are beneficial and make the ρens approach even
more accurate, except for the coherences of SI Appendix, Figs.
S8F and S9D, which correspond to pairs of states undergoing an

avoided crossing as a function of dot size. For those coherences,
reducing the size dispersion is not beneficial.
In conclusion, we showed that as a practical proposition the

inevitable size dispersion of ensembles of colloidal QDs means
that somewhat fewer than N2 logic variables are available for
information processing in an N state quantum device. The co-
herences that are not useful are rather slow beating and would be
hard to read because of their rather fast Gaussian dephasing in
time. Except for the very slow beating ones the dephasing of the
coherences could be well captured by the two lowest cumulants
of the spacing distributions. These cumulants can, of course, be
computed directly from the eigenvalues determined by diago-
nalizing the Hamiltonian and do not require computing the
temporal evolution. It is the second cumulant, the width of the
spacing distribution, that is the width of the Gaussian dephasing
in time. The third and fourth cumulants allow for a fine matching
of the dephasing as computed by averaging the dynamics over
the ensemble. The faster beating coherences are expected to be
more resilient both to thermal fluctuations and to dynamical
coupling to interdot and intradot vibrations. A point about the
addressing lasers is that the most resilient faster beating coher-
ences, those most suitable for information processing, could
dephase too fast for them to be detected if the pumping is not
fast enough. In typical 2D electronic spectroscopy the pump is
fast enough so that its frequency profile spans broad swaths of
the absorption spectrum, but this may not always be fast enough
to allow detection of the fast dephasing due to extreme size
dispersion.

Data Availability. There are no data underlying this work.
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